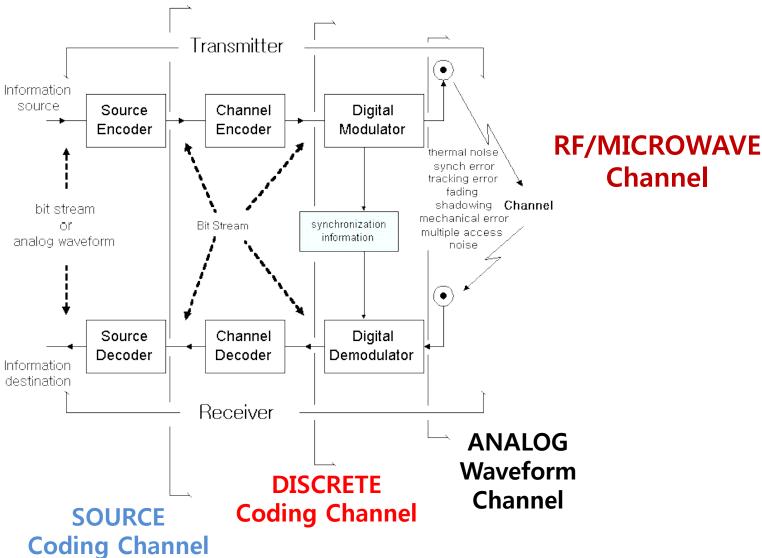
오류정정부호 기본 개념 1

How to detect and then correct errors?

CSDL

송홍엽교수


전기전자공학부 주니어세미나 수업자료

Digital Communication Modem

Types of Errors

오류의 종류

- Random error:
 - · DMC+AWGN, wireless channel
 - · Communication channel without fading
- Burst error
 - Most recording channel (Hard Disk, DVD)
 - · Communication channel with deep fading

발생 상관에 따라

 $000 \to 001$

- Substitution error
- Insertion error
- Deletion error

발생 형태에 따라

오류의 종류는 채널의 특성에 따른다.

 $0001 \rightarrow 00$ $000 \rightarrow 0010$

Methods of Error Control

Forward error correction(FEC)

- most powerful and complex (mostly in wireless communication)
- one-way transmission systems: deep space or storage

Error detection with ARQ

- less powerful and simpler than FEC (mostly in wireline network)
- two-way transmission systems
- stop-and-wait ARQ, continuous ARQ, selective-repeat ARQ

Error concealment

- · essentially a **signal processing** technique
- process the received noisy information so that the effect of errors becomes negligible: Audio/Video Coding

to detect errors and then sometimes correct those errors?

Is this a magic? No, it is not.

What's going on?

Space of Natural Language

• 서운시 서대문구 연세로 50

· 오류검출가능 **그리고** 정정가능

- 연세대학교 전가 공학과
 - 오류검출가능 그러나 정정불가능 (전자 ? 전기 ?)

- 오류정정부호 과목 수강생은 20명이다.
 - 오류검출 불가능(??) 그러므로 정정불가

What's going on?

Space of Binary Language

사용하는 코드의 길이는 3, 모든 가능한 단어는 총 8개이 중에서 "일부"만 사용하기로 하자.

예를 들어 다음의 4개만 사용: 000, 110, 101, 011.

- 1. 수신한 단어가 001:
 - · 오류가 검출되는가?
 - · 어느 비트가 오류인가?
- 2. 수신한 단어가 110:
 - · 오류가 검출되는가?
 - · 어느 비트가 오류인가?

(Hamming) Distance and Weight

Hamming Distance

- · codeword u = 000111
- · codeword $v = 011100 \Rightarrow distance = 4$
- Minimum (Hamming) Distance of a code is the minimum of distances between all possible two distinct codewords

Hamming Weight

- · codeword $u+v = 011011 \Rightarrow$ weight = 4
- Minimum (Hamming) Weight of a code is the minimum weight of all the non-zero codewords

Space of binary language

Addition

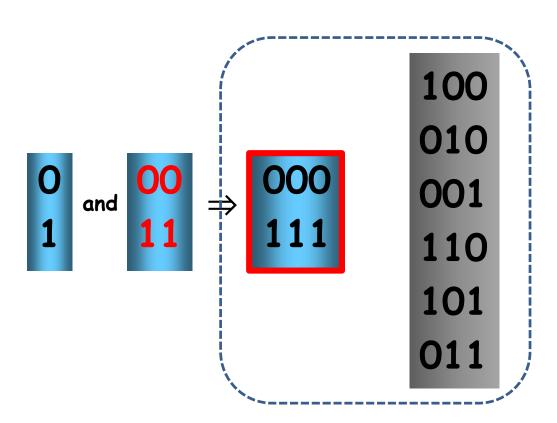
Multiplication

•
$$F_2 = \frac{\text{Finite Field of size 2}}{\text{= GF(2) = binary field}}$$

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

- V=Set of all the binary n-tuples (size=2ⁿ)
 - · A binary block code C of length n is a subset of V.
- · Error Detection:


- When you receive a word not in C.
- Error Correction:
 - The most likely (unique) word in C is a decoded word.
- Undetected Error:
 - Changes a word in C into a different word in C.

Three-time-repeat code

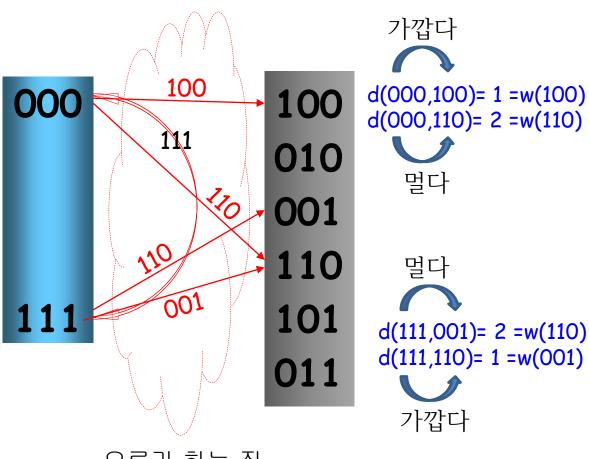
- Length = n=3
- minimum distance = 3 = minimum weight

Two Views:

- These are all the possible
 1-tuples and two parity
 bits repeating it.
- These are two 3-tuples with distance 3, including 000, out of all possible binary 3-tuples (there are 8 of them).

오류 검출의 원리

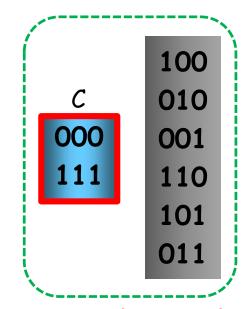
모든 가능한 단어들 중 일부만 사용하기 때문에 오류 검출이 가능하다.



오류의 해석

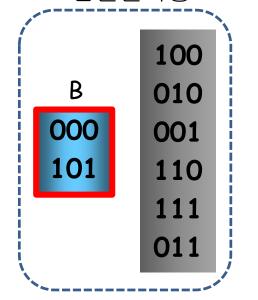
오류는 한 (송신)단어를 다른 (수신)단어로 바꾼다.

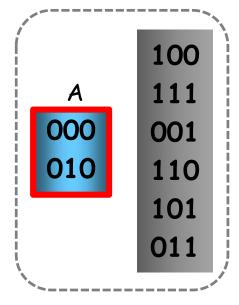
오류가 크다는 뜻은 더 멀리 있는 단어로 바꾼다는 뜻이다.


오류가 하는 짓

멀리 떨어진 단어들

서로 멀리 떨어진 단어들을 사용한다면 좀 더 큰 오류까지도 검출 가능하다.

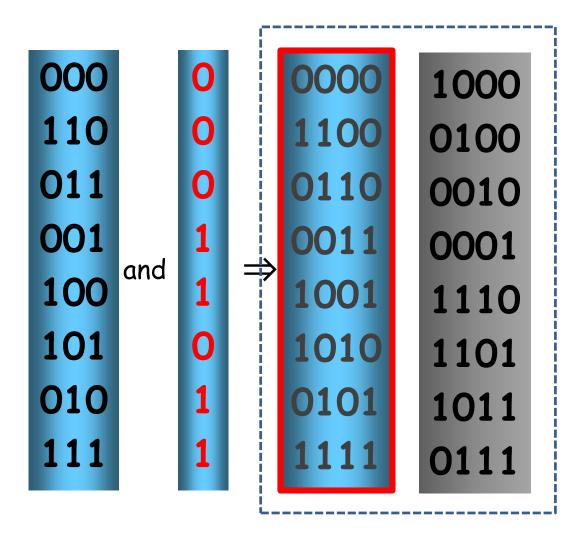

모든 1비트 오류와 모든 2비트 오류를 검출.


그러나

3비트 오류는 검출 불가능

모든 1비트 오류를 검출함.

그러나 어떤 종류의 2비트 오류는 검출불가능



어떤 종류의 1비트 오류는 검출불가능

Single Parity Code of Length 4

OBSERVE:

minimum distance = 2 = minimum weight

Two Views:

- These are all the 3-tuples with some 1 bit (called parity bit) adjoined so that the number of 1's is even.
- These are the eight 4-tuples of even weight out of all the 4-tuples (16 of them).

Single Parity Code (Overall Parity)

Given a message (information) sequence of length *k*

we calculate

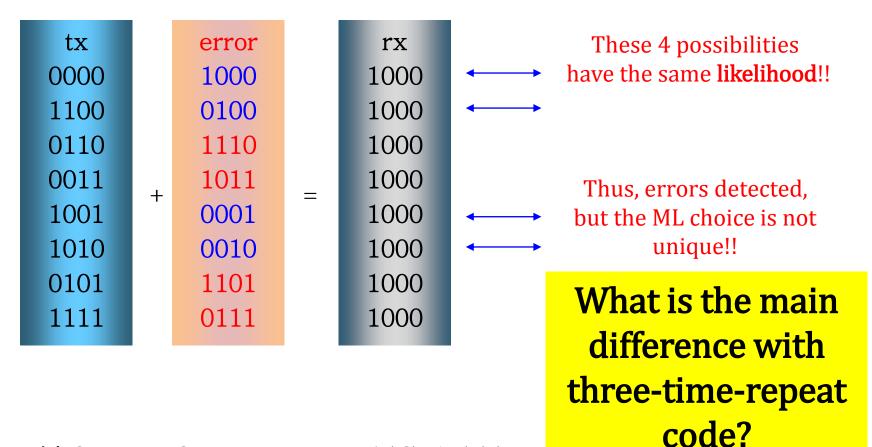
$$\underline{m}=(m_1,m_2,m_3,\cdots,m_k)$$

$$p = m_1 + m_2 + \cdots + m_k \pmod{2}$$

and form a codeword of length $k+1$ as

$$\underline{c} = (m_1, m_2, m_3, \dots, m_k, p)$$

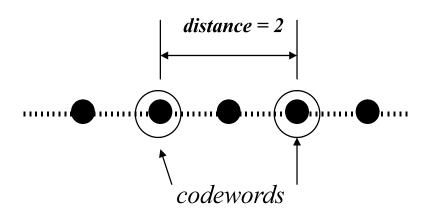
- Note that p=1 if m has odd number of 1's, and p=0 if m has even number of 1's.
- A single error can be detected if the number of 1's in the received word is not even. In fact, any odd number of error bits can be detected.
- Note that, since we compute mod 2, we have


$$p = m_1 + m_2 + \cdots + m_k \iff p + m_1 + m_2 + \cdots + m_k = 0$$

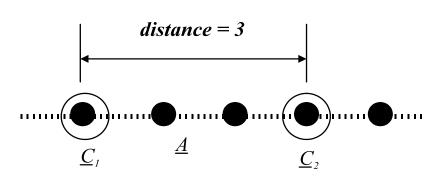
ML decoding의 개념

- Suppose we have rx=1000.
- Which one is more likely to happen in the channel?

Geometric View



- A word is a binary n-tuple.
- V has a total of 2ⁿ words. (16 when n=4)
- Each pair of these words has a distance, which can be 1, 2, 3, or 4.
- C is a subset of V.
 - · Single parity code of length 4 has 8 codewords.
 - Each pair of codewords has a distance at least 2, which is the minimum distance of the code.


Error-Detecting and Error-Correcting

No single error can change (transform) a codeword into another codeword.

However, certain (but not all) double errors can change a codeword into another codeword.

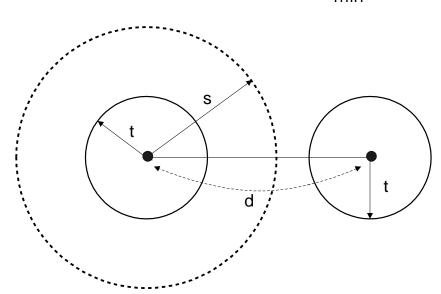
In order to correct a single error, we must have $d \ge 3$.

Under the minimum distance decoding, the received word \underline{A} is decoded as $\underline{c_1}$ since it is closer to $\underline{c_1}$ than to $\underline{c_2}$.

오류정정의 기본법칙

- detect (검출)하지 못한 error는 correction(수정/정정)하지 못한다.
- detect (검출)한 error는 (암튼?) 수정할 수 있다.
 - · 올바른 수정인가?
 - · 잘못된 수정인가?
- 올바른 수정이 가능한 경우는
 - ① most likely codeword가 unique할 때 (코드 설계로 가능하게 만들 수 있다)
 - ② 채널에서 발생할 오류비트 수가 제한되어 있을 때 (???)
- 한번의 decoding에서 실제로 일어나는 상황은 아무도 모른다.
 - · 올바른 수정이 될 확률을 구할 수 있을 뿐이다.
 - · 매우 작은 확률이지만 많은 오류가 발생할 수 있다.
 - · **최적의 decoding**수단을 **반복**한다면 궁극적으로 **decoding error를 최소화**할 수 있다.

Simultaneous correction and detection (

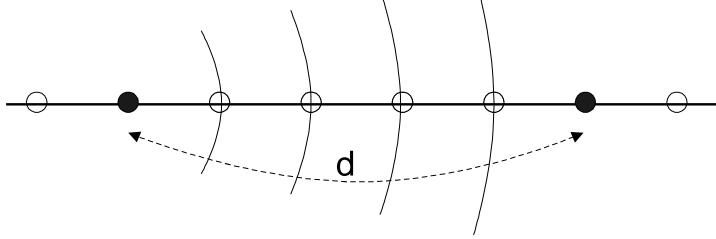


To detect s errors and correct t (≤s) errors **simultaneously**, we must have

$$d_{min} = d \ge t + s + 1$$

For error correction only, thus, we must have

$$d_{min} = d \ge 2t + 1$$


or

$$t \leq \left| \frac{d-1}{2} \right|$$

Example: When d=5

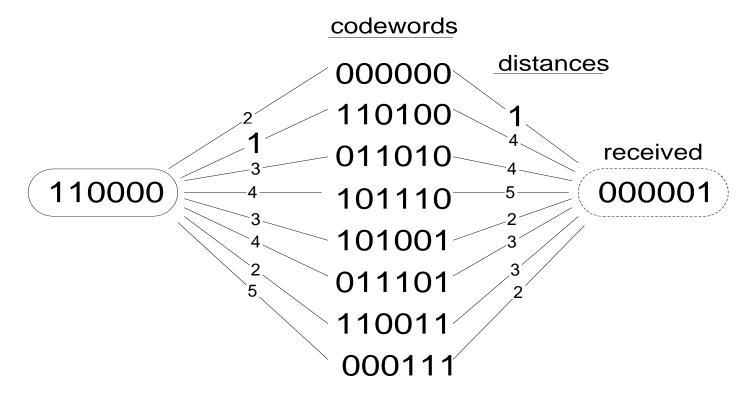
When d=5, three schemes are possible:

4-error-detecting code

✓ no correction.

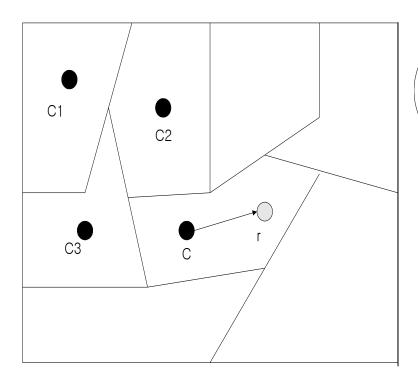
3-error-detecting and 1-error-correcting code

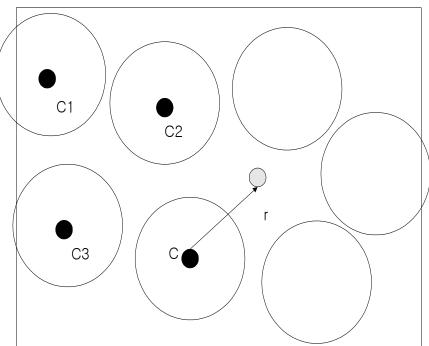
- ✓ Observe that 4-errors are not detected.
- ✓ It is regarded as 1-error and corrected.


2-error-detecting and 2-error-correcting code

✓ It is usually called as "2-error-correcting code".

Minimum Distance Decoding




Minimum distance decoding is maximum likelihood (ML) decoding under some reasonable condition (We will later prove this over BSC and with hard-decision decoding)

Complete/Incomplete Decoding

연습문제

1. 다음 두 코드워드의 해밍거리는? 001100, 010101.

2. C_1 = { 000, 011, 110, 101 }을 생각하자. 이 코드의 최소거리, 오류검출능력, 오류정정능력은 얼마인가?

3. C_2 = {00000, 11111}을 생각하자. 이 코드의 최소거리, 오류검출능력, 오류정정능력은 얼마인가?